



### **Participants**

Acquaviva, Jim: Pall Corporation

Armstrong, Tim: Oak Ridge National Laboratory

Asaro, Marianne: SRI International

Berchtold, Kathryn: Los Alamos National Laboratory
Bischoff, Brian: Oak Ridge National Laboratory
Cornelius, Chris: Sandia National Laboratories

Huang, Jason: ATP/NIST

Katikaneni, Sai: FuelCell Energy Krause, Curtis: ChevronTexaco

Marinangeli, Richard: UOP

McCarley, Ken: ConocoPhillips

Perrin, Jerome: Air Liquide

Ratcliff, Matt: NREL

Schlasner, Steven: ConocoPhillips

Shen, John: US Department of Energy

Staiger, Chad: Sandia National Laboratories

Taylor, Amy: US Department of Energy

Welk, Margaret: Sandia National Laboratories



#### Performance Goals

- Purity
  - □ 99% for single-stage microporous membrane system
  - ☐ Still achieves 99.99% for overall system

#### Durability

- □ 100,000 hours is difficult, and there is no way established to demonstrate that you can achieve it
- May need more realistic or validatable target (performance criteria that will stand in place of the 100,000 hour target)
- Operating Temperature
  - Membrane requirements need to be part of overall system integration (replacing PSA does not have to be high-temperature)



#### Performance Goals

Most important performance target is:

#### \$/scfh

system design and membrane requirements come from that target

### **Technology Options**

| Option                               | DG<br>or C | Pros                                                                                                     | Cons                                                                                                                 |
|--------------------------------------|------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Zeolites or<br>Zeolite<br>Structures | All        | Discrete pore sizes Choice of/cheap raw materials Proven performance of adsorption & catalysis           | Hydrothermal stability Low separation factors Brittle High-T stability in steam Difficulty of mfg.                   |
| Carbon-<br>Based<br>Membranes        | DG         | Cheap Large capability in mfg of C Small footprint Module substrate is easily recyclable                 | Hydrothermal stability Strength Low flux?, selectivity? Easily oxidized Low thermoexpansion coeff.                   |
| Ceramics-<br>Based<br>Membranes      | All        | T stability Structure/pore options Stability (chemical) Potentially high flux Inexpensive starting mtls. | Hard to make thin film Brittle Pore size is not uniform Hydrothermal stability for Si Facilitation factors not there |
| Hybrid<br>Systems                    | ?          | Potentially high facilitation factor Less brittle, more toughness Thermal expansion coefficients         | Material incompatibility Lots of unknowns – could be high cost, long term                                            |



## Top Priority Barriers -- Microporous Separation Systems

- Stability/Durability & Support Issues
  - □ Durability of thin membrane films
  - □ Hydrothermal and chemical stability
  - Thermal/chemical incompatability of membrane with substrate
- Fabrication & Defect Management
  - Management of defects in membranes
  - Scale-up to manufacturing
- Characterization & Performance Testing
  - Lack of standardized accelerated durability testing and standard composition to test membrane with



# Top Priority Barriers -- Microporous Separation Systems

- System/Module Issues
  - □ Fouling
  - Module design
- Performance
  - Maximum purity achievable is lower than 99.99%
  - Optimization of selectivity and flux trade-off
- Fundamentals
  - Poor understanding of mass transport diffusion through membrane
  - Lack of transport models



# Top Priority R&D Needs – Microporous Separation Systems

- Standardized Tests
  - Develop standardized, universal testing for membranes
  - □ Develop, standardize, and publicize membrane screening tools
- Module/System Design & Integration
  - Research on integrated membrane reactors (membranes as part of system/module)
  - Design system module development and optimization
- Fabrication Process
  - Develop generic reparation techniques to minimize or plug oversize pores in situ
  - □ Develop system hybrid-based systems to achieve 99.99% purity
  - Explore comparison of physical and chemical techniques for thin-film deposition
  - □ Manufacturing technology development (low cost thin film)



# Top Priority R&D Needs – Microporous Separation Systems

- Modeling
  - □ Fundamental research to address top barriers (e.g., diffusion transport modeling)
- Property and Performance Characterization
  - Systematic study of fouling contaminants from gas composition and effects on stability, flux, and purity
  - Understand thermochemical properties along the membrane length
  - ☐ Kinetic/thermophysical studies on stability in presence of water
- Materials and Structures Design
  - New materials development
  - Paradigm shift in membrane materials platform
  - Sequential programs: system/module design then materials design



### Take-Away Messages

- Microporous membranes have a huge base of materials and manufacturing choices
  - □ Many material options and manufacturing techniques
- However, goals and objectives are very challenging may require out-of-the-box thinking, paradigm shifts
- Need innovations in modules, structures, and materials
- Identified a need to develop standardized test methods across the board
- Look at system integration with membrane
- Formation of membrane and fundamental material science are key areas of investigation
- Integrated approach to membrane <u>and</u> support
- Specifications should be \$/scfh